of the starting material still remained unchanged (TLC), and thus bis(trimethylsilyl) sulfide ($420 \mathrm{mg}, 2.3 \mathrm{mmol}$) and $\mathrm{BCl}_{3}(180 \mathrm{mg}$, 1.6 mmol) were added further and the mixture was refluxed for an additional 26 h . To the resulting mixture were added water and benzene. The organic layer was separated, washed with water, and dried. Removal of the solvent followed by purification with dry column chromatography (silica gel, $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) gave $53 \mathrm{mg}(52 \%)$ of 4 b .

Sulfurization of 1,6-Dione 1c with $B_{2} S_{3}$. To a solution of 1 c ($161 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene (25 mL) were successively added bis(trimethylsilyl) sulfide ($890 \mathrm{mg}, 5 \mathrm{mmol}$) and BCl_{3} (390 mg , 3.3 mmol) by syringes through a rubber septum under N_{2}. The mixture was refluxed for 48 h and then the solvent was removed under reduced pressure. The residue was subjected to dry column chromatography (silica gel, 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) to give 35 mg (20%) of $\mathbf{4 c}, 100 \mathrm{mg}(57 \%)$ of 7 c , and $10 \mathrm{mg}(6 \%)$ of 8 c .

Sulfurization of 1,7 -Dione $1 d$ with $B_{2} S_{3}$. To a solution of 1d ($181 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene (20 mL) were successively added bis(trimethylsilyl) sulfide ($890 \mathrm{mg}, 5 \mathrm{mmol}$) and BCl_{3} (390 mg , 3.3 mmol) by syringes through a rubber septum under N_{2}. The mixture was heated under reflux for 48 h and the solvent was removed. The residue was purified by dry column chromatography (silica gel, $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) to provide $140 \mathrm{mg}(76 \%)$ of 7 d and $11 \mathrm{mg}(6 \%)$ of 8 d .

Preparation of $2,2,3,3$-Tetramethyl-1,4-bis (4-methyl-phenyl)-5,6-dithiabicyclo[2.1.1]hexane (14). 2,2,3,3-Tetra-methyl-1,4-bis(4-methylphenyl)butane-1,4-dione (20) was prepared by a method similar to that used for 1a. ${ }^{9}$ A solution of 20 (136 $\mathrm{mg}, 0.422 \mathrm{mmol}$) and LR ($512 \mathrm{mg}, 1.27 \mathrm{mmol}$) in benzene (10 mL) was heated for 5 h at $51-54^{\circ} \mathrm{C}$. The mixture was cooled to room temperature and the solvent was removed. The residue was subjected to dry column chromatography (silica gel, 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) to afford 16 mg (11%) of bis[2-methyl-1-(4-methylphenyl)-1-propenyl] disulfide (15) and 115 mg of an inseparable mixture of 14 and 2,2,3,3-tetramethyl-1,4-bis(4-methylphenyl)-5,6,7-trithiabicyclo[2.2.1]heptane (21). The yield of 14 and 21 were determined by ${ }^{1}$ H NMR to be 53 and 22%, respectively. The mixture obtained above was used in the isomerization experiment. 20: colorless crystals, mp $106.0-106.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.41(\mathrm{~s}, 12 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 7.17(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$, $7.50(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.6(\mathrm{q}), 23.9(\mathrm{q}), 53.7(\mathrm{~s}), 127.1$ (d), 128.1 (d), 138.2 (s), 139.4 (s), 210.9 (s); MS $m / z 322\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2}$: $\mathrm{C}, 81.95 ; \mathrm{H}, 8.13$. Found: $\mathrm{C}, 81.79$; H, 8.02. 15: colorless crystals, mp $111-112{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\delta 1.60$ $(\mathrm{s}, 6 \mathrm{H}), 1.81(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 7.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.13$
(d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 21.3$ (q), 22.9 (q), 23.3 (q), 128.3 (d), 130.3 (d), 130.9 (s), 136.2 (s), 137.1 (s), 137.3 (s); MS m/z (relative intensity) $354\left(\mathrm{M}^{+}, 40\right), 177(80), 145$ (100). HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~S}_{2} \mathrm{~m} / \mathrm{z} 354.1476$, found 354.1428. 14: ${ }^{1} \mathrm{H}$ NMR $\delta 1.34$ (s, 12 H), 2.32 ($\mathrm{s}, 6 \mathrm{H}$), $6.90(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=8 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.2$ (q), 25.1 (q), 56.3 (s), 79.3 (s), 125.8 (d), 128.2 (d), 133.9 (s), 137.2 (s); MS $m / z 354$ (M^{+}). 21: pale yellow crystals, mp $227.0-228.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.75$ ($\mathrm{s}, 6 \mathrm{H}$), 1.40 ($\mathrm{s}, 6$ H), $2.36(\mathrm{~s}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 24.8$ (q), 26.9 (q), 58.3 (s), 93.3 (s), 128.3 (d), 128.8 (d), 133.5 (s), 138.5 (s); MS m / z (relative intensity) $386\left(\mathrm{M}^{+}, 3\right)$, 322 (100), 307 (51), 145 (47). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~S}_{3}: \mathrm{C}, 68.34 ;$ H, 6.78. Found: C, $67.90 ; \mathrm{H}, 6.77$.

Thermal Isomerization of a Mixture of 1,3-Dithietanes 4 a and 14. A mixture of $4 \mathrm{a}(0.1 \mathrm{mmol})$ and $14(0.1 \mathrm{mmol})$ contaminated with 21 in benzene (5 mL) was heated for 6 h at reflux. HPLC analysis (flow rate: $1 \mathrm{~mL} / \mathrm{min}$) of the mixture showed two peaks due to disulfides $2\left(t_{\mathrm{R}} 3.3 \mathrm{~min}\right)$ and $15\left(t_{\mathrm{R}} 4.2 \mathrm{~min}\right)$ in addition to unreacted $21\left(t_{\mathrm{R}} 5.5 \mathrm{~min}\right)$.

Sulfurization of Benzophenone with 6. A mixture of 6 (271 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and benzophenone ($91 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene $(10 \mathrm{~mL})$ was refluxed under N_{2} for 4 h and the resulting blue solution was cooled to room temperature. An aliquot (1 mL) of this solution was taken out and diluted to 50 mL with hexane. The yield of thiobenzophenone was estimated to be 92% by determining the intensity of the absorption due to thiobenzophenone ($\lambda_{\max } 609 \mathrm{~nm}, \epsilon=184^{19}$) in the visible spectrum. 1,3Dithietane 4 b ($140 \mathrm{mg}, 95 \%$) was obtained by chromatographic workup of the whole reaction mixture.

Sulfurization of Benzophenone with 17. A mixture of 17 ($106 \mathrm{mg}, 0.263 \mathrm{mmol}$) and benzophenone ($50 \mathrm{mg}, 0.27 \mathrm{mmol}$) in toluene (5 mL) was heated under reflux for 1 h . A portion (1 mL) of the mixture was taken out and was submitted to visible spectrum analysis, which revealed that the yield of thiobenzophenone is 68%.

Registry No. 1a, 34733-56-7; 1b, 95581-35-4; 1c, 125611-53-2; 1d, 125611-54-3; 2, 125611-55-4; 3а, 125611-56-5; 3c, 125611-57-6; 4a, 125611-58-7; 4b, 125611-59-8; 4c, 125611-60-1; 6, 125611-61-2; 7c, 125611-62-3; 7d, 125611-63-4; 8c, 125611-64-5; 8d, 125611-65-6; 9, 125611-66-7; 10, 97584-63-9; 14, 125611-67-8; 15, 125611-68-9; 17, 82998-27-4; 20, 125611-69-0; 21, 125611-70-3; bromobenzene 108-86-1; 2,5-dicyano-2,5-dimethylhexane, 10526-16-6; 2,6-di-cyano-2,6-dimethylheptane, 2941-36-8; isobutyrophenone, 611-70-1; benzophenone, 119-61-9; thiobenzophenone, 1450-31-3.

Manganese(III)-Based Oxidative Free-Radical Cyclization of Unsaturated β-Keto Esters, 1,3-Diketones, and Malonate Diesters

Steven A. Kates, Mark A. Dombroski, and Barry B. Snider*
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9110

Received November 14, 1989

Abstract

Oxidative free-radical cyclizations of unsaturated β-keto esters, 1,3 -diketones, and malonate diesters with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ are described. Oxidation of β-keto ester 1 with $\mathrm{Mn}(\mathrm{III})$ to enol radical 2 followed by 6 -exo cyclization gives radical 4 , which is oxidized by $\mathrm{Cu}(\mathrm{II})$ to give alkene 7 in $64-71 \%$ yield. Oxidation of 9 gives a lower yield of 5 -exo cyclization product 11 due to competing overoxidation to give 13. Oxidative cyclization of 18 gives the tertiary radical 19 , which is further oxidized to cation 20. Oxidation of α-substituted β-keto esters 23, 33, and 37 proceeds in high yield since the product cannot be oxidized further. Oxidative cyclization of unsaturated cyclic β-keto esters 40 a and 45 proceeds efficiently to give bicyclic adducts 42, 44, and 47. Oxidative cyclizations of 4-alkenyl-2-methylcyclopentane-1,3-diones 54, 61, and 64 provide bicyclo[3.2.1]octanediones 57, 63, and bicyclo[3.3.1]nonanediones 66 and 67 in moderate yields. These studies indicate that Mn (III)-based oxidative free-radical cyclization is a powerful synthetic method, delineate the scope and limitations of this reaction, and suggest further avenues for exploration.

In the past decade free-radical cyclization of alkenes has become a valuable method for the synthesis of cyclic
compounds. ${ }^{1}$ The most widely used method is the reduction of a halide or other functional group to a radical
with $\mathrm{R}_{3} \mathrm{SnH}$, followed by cyclization and reduction of the resulting cyclic radical with $\mathrm{R}_{3} \mathrm{SnH}$ to a hydrocarbon in the chain propagation steps (eq 1). This approach is

limited, leading to a relatively unfunctionalized product resulting from a net two-electron reduction. Oxidative free-radical cyclization in which the initial radical is generated oxidatively and/or the cyclic radical is oxidized to terminate the reaction has considerable synthetic potential since more highly functionalized products can be prepared from simpler precursors (eq 2). Although some early examples are known, ${ }^{2}$ it is only in the past few years that several classes of such reactions have been developed, ${ }^{1 g}$ including halogen atom-transfer methods ${ }^{18,3}$ and organo-cobalt-based procedures. ${ }^{4}$

The well-known, but underutilized, oxidative addition of acetic acid to alkenes with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ provides the basis for another solution to this problem (eq $3) .{ }^{5}$ Pioneering studies by Heiba and Dessau ${ }^{6, \mathrm{~d}}$ and Bush

and Finkbeiner ${ }^{7}$ demonstrated that acetic acid is oxidized by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in acetic acid at reflux to the carboxymethyl radical. This radical then adds to an alkene to give a γ-carboxypropyl radical, which is oxidized by a second 1 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ to give a γ-lactone. The mechanism of this reaction has been extensively explored, and further synthetic applications have been developed by Heiba and Dessau, ${ }^{6}$ Kooyman, ${ }^{8}$ Nikishin and Vino-

[^0]gradov, ${ }^{9}$ McQuillin, ${ }^{10}$ Fristad, ${ }^{11}$ Corey, ${ }^{12}$ and others. ${ }^{12}$
Use of $\mathrm{Mn}(\mathrm{OAc})_{3}$ for oxidative free-radical cyclizations poses problems not encountered in addition reactions. In addition reactions a vast excess of oxidizable substrate such as acetic acid or acetone is often used as the solvent. Overoxidation of the product is not a major problem since a vast excess of starting material is used, and the yield is based on the amount of oxidant consumed. While this is appropriate when acetone or acetic acid is being added to hexene to give a product easily removable from starting materials by distillation, it is not acceptable in oxidative cyclization reactions in which the substrate must be prepared by multistep synthesis and the products separated from excess starting material by chromatography. Mn-(III)-based oxidative cyclization of unsaturated acids or other substrates with only a single activating electron withdrawing group is not possible, since the optimal solvent for this oxidation, acetic acid, will be oxidized preferentially.

Unsaturated β-keto esters, 1,3-diketones, and malonate esters should be suitable substrates since Heiba and Dessau ${ }^{6 e}$ and Vinogradov and Nikishin ${ }^{9 e, f, h-k, m}$ have shown that they are oxidized much more readily than acetic acid. Oxidation of 1,3 -dicarbonyl compounds by Mn (III) occurs readily at $25-70^{\circ} \mathrm{C}$. Overoxidation of the product is still a problem since an excess of oxidizable substrate cannot be used in cyclization reactions. If the product still contains an enolizable hydrogen, further oxidation of the products may occur, as has been demonstrated in addition reactions of malonic acids and esters. ${ }^{1 \mathrm{~b}, 12 \mathrm{a}, \mathrm{c}}$

We report here studies on oxidative cyclizations of a variety of unsaturated 1,3-dicarbonyl compounds to form five- and six-membered rings. ${ }^{13}$ We have previously reported the use of Mn (III)-based oxidative cyclization for tandem free-radical cyclizations, ${ }^{14 a-c, e, \text {, }}$ for the synthesis
(8) van der Ploeg, R. E.; de Korte, R. W.; Kooyman, E. C. J. Catal. 1968, 10, 52.
(9) (a) Nikishin, G. I.; Vinogradov, M. G.; Il'ina, G. P. Synthesis 1972, 376. (b) Nikishin, G. I.; Vinogradov, M. G.; Il'ina, G. P. J. Org. Chem. USSR (Engl. Transl.) 1972, 8, 1422; Zhur. Org. Khim. 1972, 8, 1401. (c) Vinogradov, M. G.; Il'ina, G. P.; Ignatenko, A. V.; Nikishin, G. I. Ibid. 1972, 8, 1425; Ibid. 1972, 8, 1403. (d) Vinogradov, M. G.; Verenchikov, S. P.; Nikishin, G. I. Ibid. 1972, 8, 2515; Ibid. 1972, 8, 2467. (e) Nikishin, G. I.; Vinogradov, M. G.; Fedorova, T. M. J. Chem. Soc., Chem. Commun. 1973, 693. (f) Vinogradov, M. G.; Fedorova, T. M.; Nikishin, G. I. J. Org. Chem. USSR (Engl. Transl.) 1976, 12, 1183; Zhur, Org. Khim. 1976, 12, 1175. (g) Vinogradov, M. G.; Verenchikov, S. P.; Nikishin, G. I. Ibid. 1976, 12, 2245; Ibid. 1976, 12, 2313. (h) Vinogradov, M. G.; Petrenko, O. N.; Verenchikov, S. P.; Nikishin, G. I. Bull. Natl. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1979, 1782; Izv. Nauk SSSR, Ser. Khim. 1979, 1916. (i) Vinogradov, M. G.; Pogosyan, M. S.; Shteinshneider, A. Y.; Nikishin, G. I. Ibid. 1981, 1703; Ibid. 1981, 2077. (j) Vinogradov, M. G.; Dolinko, V. I.; Nikishin, G. I. Ibid. 1982, 2036; Ibid. 1982, 2313. (k) Vinogradov, M. G.; Dolinko, V. I.; Nikishin, G. I. Ibid. 1984, 334; Ibid. 1984, 375. (I) Vinogradov, M. G.; Kovalev, I. P.; Nikishin, G. I. Ibid. 1984, 342; Ibid. 1984, 384. (m) Vinogradov, M. G.; Dolinko, V. I.; Nikishin, G. I. Ibid. 1984, 1884; Ibid. 1984, 2065.
(10) (a) McQuillin, F. J.; Wood, M. J. Chem. Res. Synop. 1977, 61. (b) McQuillin, F. J.; Wood, M. J. Chem. Soc., Perkin Trans. 1, 1976, 1762.
(11) (a) Fristad, W. E.; Peterson, J. R. J. Org. Chem. 1985, 50, 10. (b) Fristad, W. E.; Hershberger, S. S.; Ibid. 1985, 50, 1026. (c) Fristad, W. E.; Peterson, J. R.; Ernst, A. B. Ibid. 1985, 50, 3143. (d) Fristad, W. E.; Peterson, J. R.; Ernst, A. B.; Urbi, G. B. Tetrahedron 1986, 42, 3429. (e) Yang, F. Z.; Trost, M. K.; Fristad, W. E. Tetrahedron Lett. 1987, 28, 1493.
(12) For other current studies on intermolecular $\mathrm{Mn}(\mathrm{OAc})_{3}$ oxidative additions see: (a) Ito, N.; Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1983, 56, 3527. (b) Okano M. Bull. Chem. Soc. Jpn. 1976, 49, 1041. (c) Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1985, 26, 4291. (d) Corey, E. J.; Ghosh, A. K. Ibid. 1987, 28, 175. (e) Corey, E. J.; Ghosh, A. K. Chem. Lett. 1987, 223. (f) Citterio, A.; Santi, R.; Fiorani, T.; Strologo, S. J. Org. Chem. 1989, 54, 2703.
(13) For the publication of a portion of these results in preliminary form see ref $14 a$.
of salicylate esters, ${ }^{14 \mathrm{f}}$ and for the synthesis of seven- and eight-membered rings, ${ }^{14 \mathrm{~g}}$ and we have examined the mechanism of Mn (III)-based oxidation of β-keto esters. ${ }^{14 \mathrm{~d}}$ Corey and Kang ${ }^{15 a}$ have previously reported related oxidative cyclizations and lactonizations of unsaturated β-keto acids, and Fristad ${ }^{15 b}$ has reported related oxidative cyclizations and lactonizations of malonic and cyanoacetic acids. ${ }^{15}$

Results and Discussion

Oxidative Cyclization of 1 . Initially, we chose to examine the oxidative cyclization of unsaturated β-keto esters since Heiba and Dessau ${ }^{6 \mathrm{e}}$ and Vinogradov and Nikish$i^{9 e, f, h-k, m}$ have shown that acetoacetate esters and 1,3 -diketones undergo Mn (III)-based oxidative addition to alkenes in acetic acid at $40-60^{\circ} \mathrm{C}$ to give dihydrofurans (eq 4). To our surprise, reaction of $1 \mathrm{a}^{16}$ as a 0.1 M solution

in acetic acid with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{17}$ gives a complex mixture of products containing 5 . Apparently, radical 4 is not oxidized by $\mathrm{Mn}(\mathrm{OAc})_{3}$ but instead abstracts a hydrogen atom to give saturated β-keto ester 5. This result appears to be inconsistent with the oxidation of γ-carboxyl radicals to lactones (eq 3). However, Fristad has shown that the carboxylic acid is involved in this oxidation; a carbocation is not an intermediate. Heiba and Dessau ${ }^{6 \mathrm{~b}, \mathrm{c}}$ and Vinogradov and Nikishin ${ }^{9 \mathrm{a}-\mathrm{f}}$ have shown that $\mathrm{Mn}(\mathrm{OAc})_{3}$ will oxidize a tertiary radical to a cation but will not oxidize primary or secondary radicals at a rate competitive with hydrogen abstraction. These groups have also found that $\mathrm{Cu}(\mathrm{OAc})_{2}$, which is a thermodynamically weak oxidant that nevertheless oxidizes primary and secondary radicals very rapidly to alkenes, is compatible with $\mathrm{Mn}(\mathrm{OAc})_{3}$ oxidations. ${ }^{6 \mathrm{~b}, \mathrm{c}, 9 \mathrm{a}-\mathrm{f}}$

We were pleased to find that reaction of β-keto ester la as a 0.1 M solution in acetic acid with 2 equiv of $\mathrm{Mn}(\mathrm{O}$ $\mathrm{Ac})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ for 1 h at $50^{\circ} \mathrm{C}$ gives 7 as an equilibratable mixture of the trans keto (7a) and enol ($\mathbf{7 b}$) tautomers in 71% yield. These tautomers can be separated chromatographically, but reequilibrate over several days. ${ }^{18}$ Oxidative free-radical cyclization of
(14) For previous papers in this series see: (a) Snider, B. B.; Mohan, R. M.; Kates, S. A. J. Org. Chem. 1985, 50, 3659. (b) Snider, B. B.; Mohan, R. M.; Kates, S. A. Tetrahedron Lett. 1987, 28, 841. (c) Mohan, R.; Kates, S. A.; Dombroski, M.; Snider, B. B. Ibid. 1987, 28, 845. (d) Snider, B. B.; Patricia, J. J.; Kates, S. A. J. Org. Chem. 1988, 53, 2137. (e) Snider, B. B.; Dombroski, M. A. J. Org. Chem. 1987, 52, 5487 . (f) Snider, B. B.; Patricia, J. J. J. Org. Chem. 1989, 54, 38. (g) Merritt, J. E.; Sasson, M.; Kates, S. A.; Snider, B. B. Tetrahedron Lett. 1988, 29, 5209. (h) Dombroski, M. A.; Kates, S. A.; Snider, B. B. J. Am. Chem. Soc. 1989. In press.
(15) For other studies of Mn (III)-based oxidative free-radical cyclizations see: (a) Corey, E. J.; Kang, M.-C. J. Am. Chem. Soc. 1984, 106, 5384. (b) Ernst, A. B.; Fristad, W. E. Tetrahedron Lett. 1985, 26, 3761. (c) Peterson, J. R.; Egler, R. S.; Horsley, D. B.; Winter, T. J. Tetrahedron Lett. 1987, 28, 6109. (d) Paquette, L. A.; Schaefer, A. G.; Springer, J. P. Tetrahedron 1987, 43, 5567. (e) Surzur, J.-M.; Bertrand, M. P. Pure Appl. Chem. 1988, 60, 1659. (f) Oumar-Mahamat, H.; Moustrou, C.; Surzur, J.-M.; Bertrand, M. P. Tetrahedron Lett. 1989, 30, 331. (g) Citterio, A.; Cerati, A.; Sebastiano, R.; Finzi, C. Tetrahedron Lett. 1989, 30, 1289. (h) Citterio, A.; Fancelli, D.; Finzi, C.; Pesce, L.; Santi, R. J. Org. Chem. 1989, 54, 2713. (i) Rama Rao, A. V.; Rao, B. V.; Reddy, D. R.; Singh, A. K. J. Chem. Soc., Chem. Commun. 1989, 400.
(16) Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082. Cf.: Hirama, M.; Shimizu, M.; Iwashita, M. J. Chem. Soc., Chem. Commun. 1983, 599.
(17) Comparable results were obtained with $\mathrm{Mn}(\mathrm{OAc})_{3}$ prepared in situ from KMnO_{4} and $\mathrm{Mn}(\mathrm{OAc})_{2}:$ Lux, H In Handbood of Preparative Inorganic Chemistry; 2nd ed.; Brauer, G., Ed.; Academic Press: New York, 1965; Vol. II, pp 1469-1470.

the E isomer 1 b for 26 h at $25^{\circ} \mathrm{C}$ gives 7 in 64% yield. Slightly higher yields of product are usually obtained when these reactions are carried out at $15-25^{\circ} \mathrm{C}$, although reaction times are much shorter at high temperatures.
We have previously shown that manganese enolate $\mathbf{2 a}$ is formed rapidly in the reaction of 1 a with $\mathrm{Mn}(\mathrm{OAc})_{3}$. $2 \mathrm{H}_{2} \mathrm{O}$ and that the double bond is involved in the ratedetermining step of the oxidation, ${ }^{14 d}$ which is probably the conversion of 2 a to the 6 -exo cyclized radical 4 without the intermediacy of 3a. Kochi's extensive studies of the mechanism of oxidation of alkyl radicals by $\mathrm{Cu}(\mathrm{OAc})_{2}$ establish that an alkylcopper(III) intermediate such as 6 is formed initially. ${ }^{19}$ Primary and secondary radicals react with $\mathrm{Cu}(\mathrm{OAc})_{2}$ to give organocopper intermediates that undergo β-hydride elimination to give alkenes, $\mathrm{Cu}(\mathrm{OAc})$, and acetic acid without the intermediacy of a carbocation. ${ }^{19}$ Tertiary radicals are oxidized by $\mathrm{Cu}(\mathrm{OAc})_{2}$ to carbocations. ${ }^{19} \mathrm{Cu}(\mathrm{I})$ is reoxidized to $\mathrm{Cu}(\mathrm{II})$ by $\mathrm{Mn}(\mathrm{III})$, so that 2 equiv of Mn (III) is needed and, in principal, only a catalytic amount of $\mathrm{Cu}(\mathrm{II})$ is required. In related systems we have found that use of only 0.05 equiv of $\mathrm{Cu}(\mathrm{II})$ is sufficient. ${ }^{14 g}$
Three alkenes can be formed from organocopper intermediate 6. Elimination could also have given 8 with a trisubstituted double bond and the isomer of 7 with a Z-disubstituted double bond. Neither of these compounds is observed within the limits of detection. ${ }^{20}$ The absence of $\mathbf{8}$ is not significant since it contains an allylic enolizable hydrogen atom and should be oxidized rapidly by $\mathrm{Mn}(\mathrm{O}$ $\mathrm{Ac})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ if it were formed. The exclusive isolation of 7 in 71% yield demonstrates that oxidative formation of an alkene from radical 4 and $\mathrm{Cu}(\mathrm{OAc})_{2}$ is stereospecific for the E isomer and selective for the Hofmann product with a less substituted double bond. Early results from Kochi's laboratory suggested that $\mathrm{Cu}(\mathrm{OAc})_{2}$ oxidation of alkyl

[^1]radicals gives statistical mixtures of products. ${ }^{19}$ More recently, Collum has reported an example of a $\mathrm{Pb}(\mathrm{O}-$ $\mathrm{Ac})_{4}-\mathrm{Cu}(\mathrm{OAc})_{2}$ oxidative decarboxylation that gives exclusively the Hofmann product. ${ }^{21}$ We have found that the oxidative decarboxylation of secondary carboxylic acids gives mixtures of alkenes rich in the E isomer and the Hofmann product. ${ }^{22}$ Selective formation of 7 by oxidation of 4 with $\mathrm{Cu}(\mathrm{OAc})_{2}$ is therefore the expected, normal process.

Oxidative Cyclization of 9 . Oxidative cyclization of $9 a^{16}$ as described above gives the expected product 11a in only 21% yield, a $7: 2: 1$ mixture of $15 a, 17 a$, and $16 a$ in 5% yield, and recovered 9 a in 17% yield. Oxidative cycliza-

tion of $9 \mathbf{b}^{16}$ gives the expected product $\mathbf{1 1 b}$ in only 36% yield; traces of $15 \mathrm{~b}, 17 \mathrm{~b}$, and 16 b ; dienone 13 b in 10% yield; and recovered 9b in 20% yield. Dienone $13 \mathbf{a}$ is probably also formed in the oxidative cyclization of $8 \mathbf{a}$, but it reacts further since the terminal double bond is very susceptible to nucleophilic attack. The methyl group on the double bond of $\mathbf{1 3 b}$ decreases the susceptibility of the dienone to nucleophilic attack. Steric hindrance from the methyl group on the double bond is also probably responsible for the higher yield of $11 b$ than 11a.

Cyclopentane 11 b is formed in much lower yield than the analogous cyclohexane 7 obtained in the cyclization of 1 . The isolation of the more highly oxidized product 13 b indicates that further oxidation of 11 b is one cause of the lower yield. The product 11 b still contains an enolizable proton and is oxidized to radical $12 \mathbf{b}$; further oxidation gives 13 b . We have discussed in detail elsewhere the reasons why overoxidation of $11 \mathbf{b}$ occurs but overoxidation of 7 does not occur and shown that use of α-chloro β-keto esters prevents overoxidation. ${ }^{14 \mathrm{~d}}$

The minor products 15,16 , and 17 are formed from 6 -endo closure to give cyclohexyl radical 14. Oxidative elimination gives 15 and 16 , which are isolated as the enol tautomers. Further two-electron oxidation gives salicylate 17. We have explored the scope of this salicylate synthesis using substrates in which 6 -endo cyclization is the major process. ${ }^{14 \mathrm{f}}$ With a 1,2 -disubstituted double bond, 5 -exo cyclization to give 10 is the major process ($60-90 \%$) and

[^2]6 -endo cyclization to give 14 is a minor process. In the cyclization of 1,6 -exo cyclization to give 4 is the exclusive process, although with monosubstituted alkenes 7 -endo cyclization becomes the major process. ${ }^{14 \mathrm{~g}}$

Oxidative Cyclization of 18 . Reaction of $18 a^{16}$ as a 0.1 M solution in acetic acid with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3}$. $2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ gives 21 a in 41% yield as a 1.2:1 mixture of keto and enol tautomers. Oxidative cyclization of 18 a gives radical 19a, which is probably

oxidized to cation 20a by either Mn (III) or $\mathrm{Cu}(\mathrm{II})$; loss of a proton gives 21a. For reasons that are not clear, the tertiary acetate 22a is not obtained. Carrying out the oxidation in the absence of $\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$ gives a mixture of 21a and a small amount of the analogue with a saturated side chain. This indicates that Mn (III) will oxidize 19 a to 20a and that hydrogen atom abstraction can compete with oxidation by Mn (III) even for the tertiary radical 19a. Oxidative cyclization of $18 \mathbf{b}^{16}$ by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ gives alkene 21 b in 8% yield and acetate 22 b in 10% yield. The lower yields of products are presumably due to further oxidation as discussed above for 11. Similar mixtures of products are obtained when $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is used as a cooxidant. Exo cyclization to give 19 occurs exclusively with both 18 a and 18 b presumably due to steric hindrance to endo cyclization by the two methyl groups and the greater stability of the tertiary radical. ${ }^{1}$

Oxidative Cyclization of α-Methyl β-Keto Esters 23, 33, and 37. Oxidative cyclization of unsaturated α-methyl β-keto esters will give α-disubstituted cyclic β-keto esters. The absence of an enolizable hydrogen in the cyclic product has two significant consequences. First, overoxidation analogous to that observed with $8,11,16,21$, and 22 cannot occur. Second, the diastereomers formed in this reaction provide information on the geometry of the cyclization transition state since equilibration of the products is not possible. Unsaturated α-methyl β-keto esters 23a, $23 \mathrm{~b}, 33 \mathrm{a}, 33 \mathrm{~b}$, and 37 are readily available by alkylation of either the sodium lithium or dilithium salt of the dianion of ethyl methylacetoacetate in $25 \%, 39 \%, 57 \%, 27 \%$, and 52% yields, respectively. ${ }^{16}$ Recent results indicate that the yield of 23 a is increased to 35% by carrying out the alkylation of the dilithium salt of the dianion (prepared from LDA) in the presence of 2 equiv of HMPA.

Oxidative cyclization of Z isomer 23a gives 28 (56%), 29 (14\%), and 32 (3\%). Similar oxidative cyclization of E isomer 23b gives $28(43 \%), 29(9.5 \%)$, and $32(9.5 \%)$. The rate-determining step in this cyclization is formation of the manganese enolate 24 , which reacts rapidly to give radical $25 .{ }^{14 f}$ The geometry of the enol radical 25 has been established by examination of 6 -endo cyclizations ${ }^{14 \mathrm{~h}}$ and confirmed by the formation of only traces of 32 in the cyclization of 23 a . A 6 -exo cyclization of 25 can proceed through chair transition state 26 with an equatorial side chain to give 27 or through chair transition state 30 with an axial side chain to give 31 . Oxidative elimination of 27 with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ will give 28 and 29 while oxidative

elimination of 31 will give 32 and 29. Cyclization to give 27 is the major process with 23 b and the virtually exclusive process with 23a since there is a severe steric interaction between the ethyl group (R_{1}) and axial hydrogen in 30a. Similar effects of alkene geometry on ring stereochemistry have been observed in other 6-exo cyclizations. ${ }^{23}$ The formation of 29 indicates that oxidative elimination can also give the Zaitsev product with the more substituted double bond and suggests that 8 is formed as an unstable intermediate in the oxidation of 1 .

Cyclization of $33 \mathrm{a}, \mathbf{3 3 b}$, and 37 gives mixtures of stereoisomers. Oxidative cyclization of $\mathbf{3 3 b}$ with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ for 4 days at $25^{\circ} \mathrm{C}$ gives 39% of a $2.5: 1$ mixture of 34 a and 34 b and 70% of 36 . Similar product mixtures are obtained with

the Z isomer 33a. Oxidative cyclization of 37 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ for 2 days at $25^{\circ} \mathrm{C}$ gives 25% of a $3: 2$ mixture of 38 a and $\mathbf{3 8 b}$ and 20% of a $3: 2$ mixture of $\mathbf{3 9 a}$ and 39b. 5-Exo cyclization of both 33 and 37 proceeds in acceptable yield but gives a mixture of stereoisomers. The cyclic tertiary radical obtained from 37 is oxidized to a cation analogous to 20 , which gives a mixture of alkene 38 and acetate 39. Oxidation of 33 also gives some 6 -endo cyclization presumably giving rise to enone 35 after oxidative β-hydride elimination. Further oxidation of 35 and reaction with acetate give 36 . Formation of α-acetoxy
(23) Hanessian, S.; Dhanoa, D. S.; Beaulieu, P. L. Can. J. Chem. 1987, $65,1859$.
enones by oxidation of enones with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ has been previously described. ${ }^{24}$
The stereochemistry of $28,32,34,38$, and 39 was established by analysis of the ${ }^{1} \mathrm{H}$ NMR absorptions of the ring methine hydrogen. The shifts caused by vicinal cis and trans ester and methyl substituents in a variety of norbornanes have been determined. ${ }^{25}$ These values suggest that a hydrogen cis to a methyl and trans to an ester will absorb 0.99 ppm upfield from the diastereomer with a hydrogen cis to an ester and trans to a methyl. As predicted, the methine ring proton of the minor isomers 32, 34b, 38b, and 39b can be distinguished in the ${ }^{1} \mathrm{H}$ NMR spectrum since this absorption occurs downfield in an otherwise empty region of the spectrum at $\delta 3.11,3.35,3.36$, and 2.93 , respectively. The methine protons of the major isomers 28, 34a, 38a, and 39a absorb upfield between $\delta 2.0$ and 2.7 , in a region of the spectrum containing several other absorptions. The methyl singlets should be shielded by a cis-alkenyl substituent on an adjacent carbon. As predicted, the methyl singlets of $28,34 a$, and 38 a absorb downfield at $\delta 1.26,1.29$, and 1.43 , respectively, relative to the methyl singlets of $32,34 \mathrm{~b}$, and 38 b at $\delta 1.22,1.15$, and 1.06 , respectively. The structure of 28 was confirmed by methylation of 7 with sodium hydride and methyl iodide to give the methyl ester corresponding to 28 . Methylation should occur from the less hindered face ${ }^{26,27}$ to give 28 and not 32. The trans stereochemistry of the methyl and acetoxy groups in 36 is assigned from the vicinal coupling constant of 10.3 Hz between the methine hydrogens. The relative stereochemistry of the methyl groups in 36 is assumed on the basis of stereochemistry established in related 6 -endo cyclizations. ${ }^{14 \mathrm{~h}}$

Oxidative Cyclization of Cyclic β-Keto Esters 40 and 45. Oxidative cyclization of unsaturated cyclic β-keto esters provides a simple route to highly functionalized bicyclic compounds. Alkylation of the dianion of ethyl 2 -oxocyclohexanecarboxylate with 4-bromo-1-butene gives 40 a in 74% yield. Oxidative cyclization of 40 a with 2 equiv

of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in acetic acid at $50^{\circ} \mathrm{C}$ for 18 h gives a 35% yield of a 1.1:1 mixture of 44 and 43 . 7 -Endo cyclization to give 41 and 6 -exo cyclization to give 42 occur in approximately equal amounts. Oxidative elimination from secondary radical 41 apparently occurs regioselectively to give 43 . Oxidative elimination from primary radical 42 can only give 44 . The position of the double bond in 43 was established by irradiation of the olefinic hydrogen at $\delta 5.86$, which indicated the presence of an isolated allylic methylene group at δ

[^3]2.60. Attempted oxidative cyclization 40b-d gives only uncharacterizable products.

Alkylation of the dianion of ethyl 2-oxocyclopentanecarboxylate with 1-bromo-3(Z)-hexene gives 45 in 45% yield. Oxidative cyclization for 24 h at $25^{\circ} \mathrm{C}$ gives a mixture of $47(78 \%)$ and $48(4 \%)$. 6-Exo cyclization to

give 46 with an equatorial side chain is the exclusive process. Oxidative elimination gives predominantly the Hofmann product 47 as the E isomer. The stereochemistry of the side chain in 47 is assigned from the coupling constants of 6.1 and 11.1 Hz between the allylic methine hydrogen and the adjacent ring methylene hydrogens. The $11.1-\mathrm{Hz}$ coupling constant must be an axial-axial coupling, indicating that the allylic methine is axial.

Oxidative cyclizations of 49 a and 49 b , prepared by alkylation of methyl acetoacetate, were examined to explore the suitability of this reaction from carrying out cyclizations in which neither carbonyl group was in the ring. Oxidative cyclization of 49 a provides 67% of a $7: 3$ mixture

of 51 a and 52 a while 49 b gives 50% of a 8.5:1.5 mixture of 51 b and 52 b and 38% of 53 as a mixture of diastereomers. In both cases exo cyclization occurs exclusively to give 50 as a mixture of diastereomers. Oxidative elimination gives a mixture of regioisomers. The formation of 53 is surprising since we have not generally observed the formation of secondary acetates. Usually, secondary radicals are not oxidized by Mn (III) and are oxidized to alkenes by $\mathrm{Cu}(\mathrm{II})$. It is possible that the acetyl group assists the oxidation of 50 to give an intermediate that reacts with acetate to give 53. This proposed mechanism has ample precedent in the formation of dihydrofurans in the intermolecular addition of acetoacetate esters to alkenes. ${ }^{6 e, 9 e, f, h-k, m}$

Oxidative Cyclization of Diones. Oxidative cyclization of unsaturated 2-methylcyclopentane-1,3-diones provides an efficient route to bicyclo[3.2.1]octane-6,8-diones. Diketone 54a was prepared in 44% yield by alkylation of the dianion of 2-methylcyclopentane-1,3-dione by the procedure of Mellor and Pattenden. ${ }^{28}$ Diones 54b, 61, and

[^4]

64 were prepared similarly in $62 \%, 33 \%$, and 67% yields, respectively. Oxidative cyclization of 54 a with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ for 18 h at $25^{\circ} \mathrm{C}$ gives 38% of dione 57 a . The position of the double bond in 57a follows from careful analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum, which clearly indicates the presence of three allylic hydrogens. Oxidation of 54 a by $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ gives radical 55a, which cyclizes to 56 a. Oxidative elimination can give either 57a or 58a. Although only 57a is isolated, examination of the ${ }^{1} \mathrm{H}$ NMR spectrum on the crude product suggests that $\approx 20 \%$ of 58 a is present. Presumably the location of the double bond in 58a facilitates a retro-Claisen condensation to give a keto acid during chromatographic purification.

Oxidative cyclization of $\mathbf{5 4 b}$ gives 14% of $\mathbf{5 7 b}$ as a single diastereomer. The stereochemistry of the methyl group in 57b cannot be determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum because the coupling constants to the sp^{3} methine hydrogen should be similar in both 57 b and 60 . Molecular mechanics calculations ${ }^{29}$ suggest that cyclization through a chair transition state to give $\mathbf{5 6 b}$ is favored over cyclization through a boat transition state to give 59b by $4-5 \mathrm{kcal} / \mathrm{mol}$, strongly suggesting that the product isolated is $\mathbf{5 7 b}$.

Oxidative cyclization of 61 with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3}$. $2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ gives radical 62 , which undergoes oxidative elimination to give 63 in 48% yield. None of either isomer with an endocyclic double bond is isolated. Although the cation derived from oxidation of 62 is probably an intermediate, no tertiary acetate is isolated. Oxidative cyclization of 64 gives exclusively 7 -endo

cyclization to give 65, which undergoes oxidative elimination to give 33% of a $1: 1$ mixture of 66 and 67 . Hydrogenation over Pd on carbon affords 68 in quantitative

[^5]yield. No cyclized products were obtained from ketones corresponding to 54a and 64 that were lacking the 2-methyl group or from the corresponding 4 -unsaturated 2-methylcyclohexane-1,3-diones.

Unsaturated malonate esters also undergo oxidative cyclization. Malonate esters $69 a$ and $69 b$ are readily prepared by esterification of ethyl malonyl chloride in $65-80 \%$ yield. Oxidative cyclization of 69 a and 69 b with 2 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in acetic acid at $50^{\circ} \mathrm{C}$ for several hours gives 70a and 70b

as the E isomer in 18% and 27% yields, respectively. In both cases only products obtained from exo cyclization are isolated. Further oxidation is undoubtedly responsible for the low yield and the absence of products with the more highly substituted double bond.

These studies indicate that Mn (III)-based oxidative free-radical cyclization is a powerful synthetic method. The starting materials are readily prepared, and highly functionalized mono- and bicyclic products are obtained often with excellent control of steroechemistry. The results presented above help delineate the scope and limitations of this reaction and suggest further avenues for exploration.

Experimental Section

${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} at 90 or 300 MHz (J constants were measured in hertz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 75 MHz . Infrared spectra were recorded with NaCl cells. Melting points are uncorrected. High-resolution mass spectra (MS) were obtained at 70 eV . Analytical GC was performed with a $25 \mathrm{~m} \times 0.25 \mathrm{~mm}$ fused silica column containing OV225B at a helium flow rate of $25 \mathrm{~mL} / \mathrm{min}$. Temperature programs A $\left(60^{\circ} \mathrm{C}\right.$, increasing to $100^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$, then increasing to $170^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$, and holding at $170^{\circ} \mathrm{C}$) and $\mathrm{B}\left(60^{\circ} \mathrm{C}\right.$, increasing to $100^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$, holding at $100^{\circ} \mathrm{C}$ for 10 min , increasing to $120^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$, and holding at $120^{\circ} \mathrm{C}$ for 1 min) were used. Preparative GC was performed with a $6 \mathrm{ft} \times 0.25 \mathrm{in}$. aluminum column containing 10% XF-1150 on $60 / 80$-mesh Chromosorb PNAW at a helium flow rate of $40 \mathrm{~mL} / \mathrm{min}$.
$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was purchased from Aldrich Chemical Co. and used without purification. Tetrahydrofuran (THF) and ether were distilled from sodium benzophenone ketyl. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, hexamethylphosphoric triamide (HMPA), and benzene were distilled from CaH_{2}. All air-sensitive reactions were conducted in flame-dried glassware under a positive pressure of nitrogen with magnetic stirring. Reagents were added via dry syringes through septa.

Preparation of Starting Materials. 3-Oxoalkanoate esters 1a (47%), lb (67%), 9 (45%), 9b (66%), 14a (62%), and 14b (55%) were prepared by alkylation of the sodium lithium dianion of methyl acetoacetate with 1 equiv of the appropriate bromide by the procedure of Huckin and Weiler. ${ }^{16}$ No attempt was made to optimize the yield. More recent studies indicate that adding 1 equiv of HMPA to the reaction mixture leads to significantly improved yields. Alkylation of the sodium salt of methyl acetoacetate with (Z)-bromo-4-heptene in methanol at reflux for 7 h gave 49 a (49%). Alkylation of the sodium salt of methyl acetoacetate with (Z)-bromo-5-octene in THF at reflux for 2 h gave $49 \mathrm{~b}(47 \%)$. Esterification of (Z)-2-penten-1-ol and (Z)-3-hexen-1-ol with ethyl malonyl chloride in methylene chloride containing 1.5 equiv of pyridine for 24 h at $25^{\circ} \mathrm{C}$ gave $69 \mathrm{a}(65 \%$) and 69b (78%).

Ethyl 2-Methyl-3-oxo-7(\boldsymbol{Z})-decenoate (23a). To a stirring solution of diisopropylamine ($1.86 \mathrm{~mL}, 13.3 \mathrm{mmol}$) in THF (60 mL) at $0^{\circ} \mathrm{C}$ was added dropwise n-butyllithium (2.5 M in hexanes;
$5.30 \mathrm{~mL}, 13.3 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h at which time ethyl 2 -methylacetoacetate ($0.94 \mathrm{~mL}, 6.60 \mathrm{mmol}$) was added dropwise over 5 min . The resulting deep orange solution was stirred for 0.5 h at $0^{\circ} \mathrm{C}$. HMPA ($2.31 \mathrm{~mL}, 13.3 \mathrm{mmol}$) was then added in one portion, followed by 1-bromo-3(Z)-hexene ($1.392 \mathrm{~g}, 6.60 \mathrm{mmol}$) in 6 mL of THF. The mixture was warmed to room temperature and stirred for 1 h . Normal workup afforded 1.530 g of crude product. Purification of 1.525 g by flash chromatography ($9: 1$ hexane-EtOAc) gave $0.524 \mathrm{~g}(35 \%)$ of 23 a : ${ }^{1} \mathrm{H}$ NMR $\delta 5.40$ (dtt, $1, J=10.8,8.7,1.8$), 5.28 (dtt, $1, J=10.8,8.7$, 1.8), $4.18(\mathrm{q}, 2, J=7.1), 3.51(\mathrm{q}, 1, J=7.1), 2.62-2.46(\mathrm{~m}, 2)$, 2.08-1.98 (m, 4), 1.74-1.60 (m, 2), $1.33(\mathrm{~d}, 3, J=7.1), 1.27(\mathrm{t}, 3$, $J=7.1$), $0.95\left(\mathrm{t}, 3, J=7.4\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 205.8,170.6,132.6,127.8$, 61.2, 52.8, 40.6, 26.2, 23.4, 20.4, 14.2, 14.0, 12.7; IR (neat) 1745, $1715 \mathrm{~cm}^{-1}$.
Ethyl 3-(3-Butenyl)-2-oxocyclohexanecarboxylate (40a). 4 -Bromo-1-butene ($0.743 \mathrm{~g}, 0.56 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was added to a freshly prepared THF solution of 5 mmol of the sodium lithium dianion of ethyl 2 -oxocyclohexanecarboxylate at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 2 h at $0^{\circ} \mathrm{C}$ and then for 18 h at $25^{\circ} \mathrm{C}$. Normal workup afforded 1.094 g of crude product. Flash chromatography on silica gel ($15: 1$ hexane-EtOAc) gave $0.825 \mathrm{~g}(74 \%)$ of 40 a as $1.2: 1$ mixture of keto and enol tautomers: bp $100-110^{\circ} \mathrm{C}(0.4$ Torr $) ;{ }^{1} \mathrm{H}$ NMR $\delta 12.43(0.45 \times 1$, enolic H$)$, $5.90-5.70(\mathrm{~m}, 1), 5.08-4.94(\mathrm{~m}, 2), 4.20(\mathrm{q}, 2, J=7.0), 3.38$ (dd, $0.55 \times 1, J=12.3,6.0), 2.60-1.35(\mathrm{~m}, 11), 1.30(\mathrm{t}, 3, J=7.0) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.6,138.4,114.7,97.7$ (enol), 60.1, 57.9, 37.8, 31.1, 29.6, $27.0,22.8,20.1,14.2$, all carbons not detected; IR (neat) 1745,1710 , $1650,1610 \mathrm{~cm}^{-1}$.
Ethyl 3-[3($\boldsymbol{Z})$-Hexenyl]-2-oxocyclopentane-1-carboxylate (45). Ethyl 2-oxocyclopentane-1-carboxylate ($0.71 \mathrm{~mL}, 4.76 \mathrm{mmol}$) was converted to the dianion with 9.52 mmol of lithium diisopropylamide in THF (48 mL) at $0^{\circ} \mathrm{C}$. HMPA ($0.84 \mathrm{~mL}, 4.76$ mmol) and 1-bromo-3(Z)-hexene ($2.000 \mathrm{~g}, 9.52 \mathrm{mmol}$) were added, and the reaction was stirred for 1 h at $25^{\circ} \mathrm{C}$. Normal workup gave 1.802 g of crude 45 . Flash chromatography ($15: 1$ hexaneEtOAc) gave $0.505 \mathrm{~g}(45 \%)$ of 45 as a $1: 1$ mixture of cis and trans isomers. ${ }^{1} \mathrm{H}$ NMR $\delta 5.40$ (br dt, $1, J=11.2,6.5$), $5.29(\mathrm{br} \mathrm{dt}, 1$, $J=11.2,6.7$), 4.26-4.12 (m, 2), 3.26 (br dd, $0.51 \times 1, J=5.3,8.5$), 3.12 (dd, $0.5 \times 1, J=8.5,11.0$), 2.41-2.00 (m, 8), 1.90-1.65 (m, 2), $1.53-1.32(\mathrm{~m}, 1), 1.28(\mathrm{t}, 0.5 \times 3, J=7.1), 1.27(\mathrm{t}, 0.5 \times 3, J$ $=7.1$), $0.96(\mathrm{t}, 3, J=7.0) ;{ }^{13} \mathrm{C}$ NMR $\delta 213.8(0.5), 213.2(0.5), 169.5$ (0.5), $169.4(0.5), 132.7,127.8,61.3,55.0(0.5), 54.2(0.5), 48.8(0.5)$, $48.2(0.5), 29.9(0.5), 29.6(0.5), 27.6(0.5), 27.4(0.5), 25.1(0.5)$, 24.9 (0.5), 24.8 (0.5), 24.8 (0.5), 20.5, 14.3 (0.5), 14.1 (0.5); IR (neat) 1756, $1726 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 70.55 ; \mathrm{H}, 9.31$. Found: C, 70.77; H, 9.01 .

Oxidative Cyclization of la with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. To a solution of $\mathrm{Mn}(\mathrm{OAc})_{3}(1.376 \mathrm{~g}, 5.10 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$ $(0.510 \mathrm{~g}, 2.55 \mathrm{mmol})$ in 18 mL of glacial acetic acid was added a solution of β-keto ester $1 \mathbf{a}(0.505 \mathrm{~g}, 2.55 \mathrm{mmol})$ in 7 mL of glacial acetic acid to give an opaque brownish green solution containing some undissolved $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$ at which time the solution was light blue and contained a white precipitate. Water was added to give a single cloudy phase in which the white precipitate had dissolved. The solution was extracted with five $15-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated aqueous sodium bicarbonate solution until neutral and then water. The aqueous layer was back-extracted with two $15-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, and the solvent was removed in vacuo to provide 0.512 g of crude 7. Flash chromatography on silica gel (3:1 hexane-ether) gave 0.365 g (71%) of methyl trans-2-oxo-6-[1(E)-propenyl]cyclohexanecarboxylate (7) as a 1.3:1 mixture of keto and enol tautomers. The keto and enol tautomers were partially separated by flash chromatography but equilibrated at $25^{\circ} \mathrm{C}$ after 15 days: IR (neat) $1745,1715 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 67.32; H, 8.22. Found: C, 66.90; H, 8.33 .

Data for the keto tautomer of $7:{ }^{1} \mathrm{H}$ NMR $\delta 5.47-5.08(\mathrm{~m}, 2)$, 3.63 ($\mathrm{s}, 3$), 3.12 (d, $1, J=12.0$), 2.75 (dddd, $1, J=12.0,12.0,8.0$, 4.0), 2.35-2.32 (m, 1), 2.29-1.57 (m, 5), $1.54(\mathrm{~d}, 3, J=3.7)$; ${ }^{13} \mathrm{C}$ NMR $\delta 205.2,169.5,131.7,126.2,62.9,51.6,44.3,40.6,34.1,24.6$, 17.7.

Data for the enol tautomer of 7: ${ }^{1} \mathrm{H}$ NMR $\delta 12.32$ (enolic H), $5.47-5.08$ (m, 2), 3.63 ($\mathrm{s}, 3$), 3.15-3.05 (m, 1), 2.41-2.36 (m, 1),
2.29-1.57 (m, 5), 1.54 (d, $3, J=3.7$); ${ }^{13} \mathrm{C}$ NMR $\delta 172.8,134.1,124.5$, $99.7,51.0,39.6,30.4,28.8,28.0,16.8$, one carbon was not observed. Oxidative Cyclization of 1 b with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester $1 \mathbf{b}(0.233 \mathrm{~g}, 1.18 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.631 \mathrm{~g}, 2.35 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.235 \mathrm{~g}, 1.18 \mathrm{mmol})$ in glacial acetic acid (14 mL) was stirred at room temperature for 26 h . Normal workup gave $0.192 \mathrm{~g}(83 \%)$ of crude material. Purification of 0.179 g by evaporative distillation gave 0.139 g (64\%) of 7.

Oxidative Cyclization of 9 a with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester $9 \mathrm{a}(0.511 \mathrm{~g}, 3.0 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(1.609$ $\mathrm{g}, 6.0 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.600 \mathrm{~g}, 3.0 \mathrm{mmol})$ in 30 mL of glacial acetic acid was stirred for 1 h at $50^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.356 g of crude product. Flash chromatography on silica gel ($2: 1$ hexane-ether) gave 0.026 g (5%) of a $7: 2: 1$ mixture of methyl 2-hydroxy-6-methyl-1,4-cyclohexadienecarboxylate (15a), methyl 2 -hydroxy- 6 -methylbenzoate (17a), and methyl 2-hydroxy-6-methyl-1,5-cyclohexadienecarboxylate (16a), which was not further separated, followed by 0.088 g of recovered 9 a followed by $0.106 \mathrm{~g}(21 \%, 25 \%$ based on recovered $9 \mathbf{a}$) of methyl trans-5-ethenyl-2-oxocyclopentanecarboxylate (11a).

Data for 1la: ${ }^{1} \mathrm{H}$ NMR $\delta 5.91-5.78(\mathrm{~m}, 1), 5.25-5.06(\mathrm{~m}, 2)$, $3.78(\mathrm{~s}, 3), 3.30-3.16(\mathrm{~m}, 1), 3.05(\mathrm{~d}, 1 J=12.0), 2.64-2.11(\mathrm{~m}, 3)$, $1.82-1.60(\mathrm{~m}, 1) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.7,138.2,115.9,60.7,52.4,44.8$, 38.1, 27.2, carbonyl carbon was not observed; IR $\left(\mathrm{CCl}_{4}\right) 1760,1730$, $1690,1660 \mathrm{~cm}^{-1}$. The spectral data are identical with those previously described. ${ }^{30,31}$

Data for $15 a-17 a$ determined from the mixture: IR (neat) 1750 , $1715,1675,1650,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta(15 a) 12.33$ (enolic H), $5.90-5.25(\mathrm{~m}, 2), 3.80(\mathrm{~s}, 3), 3.15(\mathrm{~m}, 1), 2.93-2.85(\mathrm{~m}, 2), 1.12(\mathrm{~d}$, $3, J=11.0) ;{ }^{1} \mathrm{H}$ NMR $\delta(16 \mathrm{a}) 5.49-5.39(\mathrm{~m}, 1), 3.81(\mathrm{~s}, 3), 3.26$ $(\mathrm{s}, 1), 3.21-2.09(\mathrm{~m}, 4), 1.70(\mathrm{~s}, 3) ;{ }^{1} \mathrm{H}$ NMR $\delta(17 \mathrm{a})^{32} 11.30$ (enolic $\mathrm{H}), 7.27(\mathrm{dd}, 1, J=11.0,11.0), 6.84(\mathrm{~d}, 1, J=11.0), 6.71(\mathrm{~d}, 1$, $J=11.0), 3.97(\mathrm{~s}, 3), 2.50(\mathrm{~s}, 3)$.

Oxidative Cyclization of 9 b with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester $9 \mathrm{~b}(0.374 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(1.073$ $\mathrm{g}, 4.0 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.400 \mathrm{~g}, 2.0 \mathrm{mmol})$ in 20 mL of glacial acetic acid was stirred for 1 h at $50^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.324 g of crude product. Flash chromatography on silica gel (3:1 hexane-ether) gave 0.074 g of recovered 9 b followed by $0.134 \mathrm{~g}(36 \%, 45 \%$ based on recovered 9b) of methyl trans-2-oxo-5-[1(E)-propenyl]cyclopentanecarboxylate (11b) followed by $0.037 \mathrm{~g}(10 \%, 12.5 \%$ based on recovered 9b) of methyl 5-oxo-2-[1(E)-propenyl]cyclopent-1enecarboxylate (13b).

Data for 11 b : ${ }^{\mathrm{i}} \mathrm{H}$ NMR $\delta 5.63-5.28(\mathrm{~m}, 2), 3.74(\mathrm{~s}, 3), 3.21-3.08$ ($\mathrm{m}, 1$) , $2.99(\mathrm{~d}, 1, J=10.3), 2.49-2.19(\mathrm{~m}, 4), 1.68(\mathrm{~d}, 3, J=5.6) ;$ ${ }^{13} \mathrm{C}$ NMR $\delta 210.8,169.0,130.9,126.4,61.0,52.0,43.8,37.9,27.5$, 17.6; IR (neat) $1760,1730 \mathrm{~cm}^{-1}$.

Data for $13 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\delta 7.28(\mathrm{~d}, 1, J=16.1), 6.68(\mathrm{dt}, 1, J$ $=6.9,15.9), 3.87(\mathrm{~s}, 3), 2.86-2.82(\mathrm{~m}, 2), 2.54-2.50(\mathrm{~m}, 2), 2.01(\mathrm{~d}$, $3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR $\delta 203.5,175.7,163.8,141.3,128.4,127.0,51.8$, $34.3,25.9,19.4$; IR (neat) $1735,1710,1635,1580 \mathrm{~cm}^{-1}$; UV $(95 \%$ EtOH) $282 \mathrm{~nm}(\epsilon 14100)$.

Oxidative Cyclization of 18 a with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{O}-$ Ac $)_{2}$. A solution of β-keto ester $18 \mathrm{a}(0.198 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}$ $(0.537 \mathrm{~g}, 2.0 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.200 \mathrm{~g}, 1.0 \mathrm{mmol})$ in 10 mL of glacial acetic acid was stirred for 1 h at $50^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.174 g of crude product. Medium-pressure chromatography on silica gel ($3: 1$ hexane-ether) gave $0.079 \mathrm{~g}(41 \%)$ of methyl trans-2-oxo-6-(methylethenyl)cyclohexanecarboxylate (21a) as a 1.2:1 mixture of keto and enol tautomers: ${ }^{1} \mathrm{H}$ NMR $\delta 12.34$ ($\mathrm{s}, 0.45 \times 1$, enolic H), 4.77 ($\mathrm{br} \mathrm{s}, 1$), $4.50(\mathrm{br} \mathrm{s}, 1), 3.69(\mathrm{~s}, 3), 3.50(\mathrm{~d}, 0.55 \times 1, J=11.5), 3.12-3.08$ (m, 1), 2.33-2.05 (m, 2), 1.75 (br s, 3), 1.70-1.43 (m, 4); ${ }^{13} \mathrm{C}$ NMR $\delta 172.6,147.7,145.3,111.1$ (e), $110.5(\mathrm{k}), 99.9(\mathrm{e}), 61.3(\mathrm{k}), 51.5$ (e), 50.9 (k), 48.1, 40.6, 38.6, 29.5, 28.5, 25.5, 24.6, 22.0, 16.6, all carbons not observed; IR (neat) $1750,1715,1660,1620 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 67.32; $\mathrm{H}, 8.22$. Found: $\mathrm{C}, 67.19 ; \mathrm{H}, 8.18$.
(30) Nugent, W. A.; Hobbs, F. W., Jr. J. Org. Chem. 1986, 51, 3376.
(31) Taber, D. F.: Petty, E. H. Ibid. 1982, 47, 4808.
(32) Hauser, F. M.; Pogany, S. A. Synthesis 1980, 814 . Weller, D. D.; Haber, A.; Rinehart, K. L., Jr.; Wiley, P. F. J. Antibiot. 1978, 31, 997. Abell, C.; Staunton, J. J. Chem. Soc., Chem. Commun. 1981, 856.

Oxidative Cyclization of 18 b with $\mathrm{Mn}(\mathrm{OAc})_{3}$ Prepared in Situ. A solution of $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(3.676 \mathrm{~g}, 15 \mathrm{mmol})$ in 75 mL of glacial acetic acid was allowed to stir for 10 min at $90^{\circ} \mathrm{C}$. To this solution was added $\mathrm{KMnO}_{4}(0.569 \mathrm{~g}, 3.6 \mathrm{mmol})$ in small portions while the temperature was maintained at $90^{\circ} \mathrm{C}$, giving a deep purple solution. When the exothermic reaction had subsided, KOAc ($12.85 \mathrm{~g}, 131 \mathrm{mmol}$) and acetic anhydride (19 mL , 201 mmol) were added, and the mixture was allowed to stir at $90^{\circ} \mathrm{C}$ for 10 min . The mixture was cooled to $45^{\circ} \mathrm{C}$, and a solution of $18 \mathrm{~b}(1.380 \mathrm{~g}, 7.5 \mathrm{mmol})$ in 1 mL of acetic acid was added. The reaction was allowed to stir for 1 h at $45^{\circ} \mathrm{C}$ followed by normal workup to afford 1.161 g of crude product. Medium-pressure chromatography of 0.742 g on silica gel (1:1 hexane-ether) gave $0.109 \mathrm{~g}(8 \%)$ of methyl 5-(methylethenyl)-2-oxocyclopentanecarboxylate (21b) as a mixture rich in the trans isomer, followed by $0.185 \mathrm{~g}(10 \%)$ of methyl 5 -(1-acetoxy-1-methylethyl)-2-oxocyclopentanecarboxylate (22b) as a mixture rich in the trans isomer.
Data for 21 b : ${ }^{1} \mathrm{H}$ NMR $\delta 4.90-4.70(\mathrm{~m}, 2), 3.72(\mathrm{~s}, 3), 3.14$ (d, $1, J=11.0), 2.60-2.00(\mathrm{~m}, 4), 1.83-1.60(\mathrm{~m}, 1), 1.80(\mathrm{br} \mathrm{s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 210.9,169.4,144.0,111.0,59.5,52.7,47.5,38.2,26.0,20.2$; IR (neat) $1765,1735 \mathrm{~cm}^{-1}$. The spectral data are identical with those previously described. ${ }^{27,30,31,33}$

Data for 22b: ${ }^{1} \mathrm{H}$ NMR $\delta 3.76(\mathrm{~s}, 3), 3.25(\mathrm{~d}, 1, J=11.0), 2.97$ (dt, $1, J=11.0,5.0), 2.56-2.32(\mathrm{~m}, 2), 2.21-2.10(\mathrm{~m}, 1), 1.96(\mathrm{~s}$, 3), $1.87-1.72(\mathrm{~m}, 1), 1.53(\mathrm{~s}, 3), 1.52(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 210.9,170.1$, $169.7,81.6,56.6,52.3,50.9,38.2,24.3,22.4,22.0,21.7$; IR (neat) $1760,1725 \mathrm{~cm}^{-1}$.

Oxidative Cyclization of β-Keto Ester 23a with $\mathbf{M n}(\mathbf{O A c})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester 23a ($0.133 \mathrm{~g}, 0.59$ $\mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.316 \mathrm{~g}, 1.18 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(0.118 \mathrm{~g}, 0.59 \mathrm{mmol})$ in 7 mL of glacial acetic acid was stirred at room temperature for 17 h . Normal workup gave 0.125 g (93%) of a yellow oil. Purification of 0.110 g by flash chromatography (20:1 hexane-EtOAc) gave $0.066 \mathrm{~g}(56 \%)$ of ethyl $6 \alpha-[1(E)-$ propenyll-1 β-methyl-2-oxocyclohexane-1 α-carboxylate (28), followed by $0.020 \mathrm{~g},(17 \%)$ of a $4.2: 1$ mixture of ethyl $6(E)$ -propylidene-1-methyl-2-oxocyclohexane-1-carboxylate (29) and ethyl $6 \beta-[1(E)$-propenyl]-1 β-methyl-2-oxocyclohexane-1 α carboxylate (32) as determined by analytical GC.

Data for 28: ${ }^{1} \mathrm{H}$ NMR $\delta 5.70$ (ddq, $1, J=7.1,15.2,1.3$), 5.45 $(\mathrm{dq}, 1, J=15.2,6.3), 4.16\left(\mathrm{q}, 2, J=7.1,-\mathrm{OCH}_{2}\right), 2.67$ (ddd, 1 , $J=6.4,13.9,13.9, \mathrm{H} 3), 2.43$ (dddd, $1, J=2.3,3.7,4.3,13.9, \mathrm{H} 3)$, 2.12-1.98 (m, 3, H4, H5, H6), 1.72-1.62 (m, 2, H4, H5), 1.68 (dd, $3, J=1.7,6.3), 1.26(\mathrm{~s}, 3), 1.25(\mathrm{t}, 3, J=7.1) ;{ }^{13} \mathrm{C}$ NMR $\delta 207.0$, $171.3,130.5,127.4,60.9,60.4,53.1,40.0,28.8,25.5,19.2,17.8,14.1$; IR (neat) $1735,1710 \mathrm{~cm}^{-1} ; t_{R}(G C B)=16.5 \mathrm{~min}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 69.61; $\mathrm{H}, 8.99$. Found: $\mathrm{C}, 69.90 ; \mathrm{H}, 8.87$.

Data for 29: ${ }^{1} \mathrm{H}$ NMR $\delta 5.39$ (br t, $1, J=7.1$), 4.25-4.12 (m, 2), 2.72-2.61 (m, 1), 2.66 (ddd, $1, J=6.2,11.2,15.3, \mathrm{H} 3$), 2.52-2.42 (m, 2), 2.26-2.15 (m, 1), $2.10(\mathrm{dq}, 2, J=7.1,7.4), 1.64-1.51(\mathrm{~m}$, 1), $1.43(\mathrm{~s}, 3), 1.24(\mathrm{t}, 3, J=7.2), 0.98(\mathrm{t}, 3, J=7.4) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\delta 206.7,172.8,136.2,128.5,61.4,60.9,39.7,25.8,24.0,21.1,18.2$, $14.2,14.0$; IR (neat) $1735,1710 \mathrm{~cm}^{-1} ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{B})=18.5 \mathrm{~min}$. Data for 32 determined from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 5.54$ (ddq, $1, J=0.9,15.1,6.3), 5.23(\mathrm{ddq}, 1, J=9.0,15.1,1.6), 4.25-4.12$ (m, 2), 3.11 (br ddd, $1, J=3.6,8.1,9.0$), 2.46 ($\mathrm{t}, 2, J=6.7$), $2.05-1.77(\mathrm{~m}, 3), 1.72-1.60(\mathrm{~m}, 1), 1.65$ (ddd, $3, J=0.4,1.6,6.3)$, $1.27(\mathrm{t}, 3, J=7.0), 1.22(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 209.1,172.6,128.4,128.2$, $63.6,61.1,47.4,38.8,27.7,23.4,18.0,17.4,14.1 ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{B})=19.2$ min.

Oxidative Cyclization of β-Keto Ester 23b with Mn(OAc) $)_{3}$ and $\mathbf{C u}(\mathbf{O A c})_{2}$. A solution of $23 b(0.403 \mathrm{~g}, 1.78 \mathrm{mmol}), \mathrm{Mn}(\mathrm{O}-$ $\mathrm{Ac})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.956 \mathrm{~g}, 3.56 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.356 \mathrm{~g}, 1.78$ mmol) in glacial acetic acid (20 mL) was stirred at room temperature for 18 h . Normal workup gave $0.340 \mathrm{~g}(84 \%)$ of crude material. Flash chromatography ($20: 1$ hexane-EtOAc) gave 0.172 $\mathrm{g}(43 \%)$ of 28 followed by $0.077 \mathrm{~g}(19 \%)$ of a $1: 1$ mixture of 29 and 30.

Oxidative Cyclization of β-Keto Ester 33 with Mn(OAc) $)_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester $33(0.102 \mathrm{~g}, 0.5 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{3}(0.276 \mathrm{~g}, 1.0 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.105 \mathrm{~g}, 0.5 \mathrm{mmol})$ in 5 mL of glacial acetic acid was stirred for 4 days at $25^{\circ} \mathrm{C}$.

[^6]Normal workup of the light blue solution afforded 0.800 g of crude product. Medium-pressure chromatography on silica gel ($15: 1$ hexane-EtOAc) of 0.066 g gave 0.004 g of recovered 33 followed by $0.030 \mathrm{~g}(36 \%, 38 \%$ based on recovered starting ester) of a $2.5: 1$ mixture of the isomers of ethyl 5 -ethenyl-1-methyl-2-oxocyclopentanecarboxylate (34a and 34b), followed by $0.003 \mathrm{~g}(3 \%)$ of 34b followed by $0.008 \mathrm{~g}(7 \%)$ of ethyl 5 -acetoxy-1,6-dimethyl-2-oxocyclohex-3-enecarboxylate (36).

Data for 34a: ${ }^{1} \mathrm{H}$ NMR $\delta 5.84-5.70(\mathrm{~m}, 1), 5.21-5.13$ (m, 2), 4.25-4.07 (m, 2, AB portion of ABX ${ }_{3}$, 2.77-2.05 (m, 5), 1.29 (s, 3), $1.23(\mathrm{t}, 3, J=7.1) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.1,135.8,117.3,61.1,59.3$, $53.0,37.4,25.4,18.2,14.2$, carbonyl carbon was not detected; IR $\left(\mathrm{CDCl}_{3}\right) 1750-1710(\mathrm{br}), 1640 \mathrm{~cm}^{-1} ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=5.50 \mathrm{~min}$.

Data for 34b: ${ }^{1} \mathrm{H}$ NMR $\delta 5.82-5.70(\mathrm{~m}, 1), 5.21-5.11$ (m, 2), 4.23-4.09 (m, 2, AB portion of $\left.\mathrm{ABX}_{3}\right), 3.41-3.31(\mathrm{~m}, 1), 2.49-2.06$ (m, 4), $1.25(\mathrm{t}, 3, J=7.5), 1.15(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 135.5,117.3,61.4$, $61.1,48.6,37.2,24.7,14.1,13.9$, two carbonyl carbons were not detected; IR $\left(\mathrm{CDCl}_{3}\right) 1745,1725 \mathrm{~cm}^{-1} ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=5.66 \mathrm{~min}$.

Data for 34a and 34b. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 67.32 ; \mathrm{H}$, 8.22. Found: C, 67.43; H, 8.66.

Data for 36: ${ }^{1} \mathrm{H}$ NMR $\delta 6.78$ (dd, $1, J=10.5,2.0$), 6.09 (dd, 1 , $J=10.2,2.2$), 5.69 (ddd, $1, J=10.3,2.1,2.0$), $4.24-4.07(\mathrm{~m}, 2$, AB portion of ABX_{3}), $2.14(\mathrm{~s}, 3), 1.45(\mathrm{~s}, 3), 1.28-1.20(\mathrm{~m}, 1), 1.24$ ($\mathrm{t}, 3, J=7.1$), $1.10\left(\mathrm{~d}, 3, J=6.8\right.$); $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right) 1740,1735,1710$ $\mathrm{cm}^{-1} ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=8.18 \mathrm{~min}$.

Oxidative Cyclization of β-Keto Ester 37 with $\mathrm{Mn}(\mathrm{OAc})_{3}$. A solution of β-keto ester $37(0.103 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{Mn}(\mathrm{OAc})_{3}$ ($0.261 \mathrm{~g}, 1.0 \mathrm{mmol}$) in 5 mL of glacial acetic acid was stirred for 2 days at $25^{\circ} \mathrm{C}$. Normal workup of the clear solution afforded 0.106 g of crude product. Medium-pressure chromatography on silica gel ($9: 1$ hexane-EtOAc) of 0.067 g gave 0.008 g of recovered starting ester followed by $0.016 \mathrm{~g}(25 \%, 27 \%$ based on recovered 37) of a $3: 2$ mixture of isomers of ethyl 1-methyl-5-(methyl-ethenyl)-2-oxocyclopentanecarboxylate (38 a and 38 b) followed by $0.024 \mathrm{~g}(20 \%, 22 \%$ based on recovered 37$)$ of a $3: 2$ mixture of isomers of ethyl 1-methyl-5-(1-acetoxy-1-methylethyl)-2-oxocyclopentanecarboxylate (39 a and 39b).

Data for 38a: ${ }^{1} \mathrm{H}$ NMR $\delta 4.93$ (br s, 1), 4.84 (br s, 1), 4.14-4.03 $\left(\mathrm{m}, 2, \mathrm{AB}\right.$ portion of $\left.\mathrm{ABX}_{3}\right), 2.70-1.86(\mathrm{~m}, 5), 1.81(\mathrm{~s}, 3), 1.42(\mathrm{~s}$, $3), 1.21(\mathrm{t}, 3, J=7.0) ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=7.26 \mathrm{~min}$. The data are identical with those previously described. ${ }^{27}$

Data for $38 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\delta 4.95$ (br s, 1), 4.78 (br s, 1), 4.27-4.16 ($\mathrm{m}, 2, \mathrm{AB}$ portion of ABX_{3}), 3.36 (dd, $1, J=11.7,6.0$), 2.70-1.86 $(\mathrm{m}, 4), 1.65(\mathrm{~s}, 3), 1.27(\mathrm{t}, 3, J=7.0), 1.06(\mathrm{~s}, 3) ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=7.33$ \min.

Data for 38a and 38b: ${ }^{13} \mathrm{C}$ NMR $\delta 143.0$ (major), 142.8 (minor), 112.6 (major), 112.4 (minor), 61.4 (minor), 61.1 (major), $59.5,55.5$, $51.1,37.6,24.4,23.4,22.9,20.1,14.1,13.3$, eight carbons were not detected; IR $\left(\mathrm{CDCl}_{3}\right) 1745,1725 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 68.54; H, 8.63. Found: C, 68.46; H, 8.91.

Data for 39a: ${ }^{1} \mathrm{H}$ NMR $\delta 4.19(\mathrm{q}, 2, J=7.1), 2.75-2.02(\mathrm{~m}, 5)$, 1.96 (s, 3), 1.65 ($\mathrm{s}, 3$), $1.61(\mathrm{~s}, 3), 1.46(\mathrm{~s}, 3), 1.24(\mathrm{t}, 3, J=7.1)$; $t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=8.89 \mathrm{~min}$.

Data for 39b: ${ }^{1} \mathrm{H}$ NMR $\delta 4.08$ (q, $2, J=7.1$), 2.93 (dd, $1, J=$ $12.2,6.1$), 2.75-2.05 (m, 4), 1.96 (s, 3), 1.59 (s, 3), 1.54 (s, 3), 1.31 $(\mathrm{s}, 3), 1.26(\mathrm{t}, 3, J=7.1) ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=8.99 \mathrm{~min}$.

Data for 39a and 39b: ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 189.6, 82.7, 82.1, $61.5,61.0,59.7,59.2,57.5,55.0,37.0,25.1,24.8,24.7,22.4,22.3$, $21.5,21.2,20.7,15.0,14.0,13.8$, five carbons were not detected; IR (CDCl_{3}) 1750-1710 (br) cm^{-1}.

Oxidative Cyclization of β-Keto Ester $40 a$ with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester $40 \mathrm{a}(0.207 \mathrm{~g}, 0.92$ $\mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(0.495 \mathrm{~g}, 1.84 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.188 \mathrm{~g}$, 0.94 mmol) in 10 mL of glacial acetic acid was stirred for 18 h at $50^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.182 g of crude product. Flash chromatography on silica gel ($20: 1$ hexane-EtOAc) gave $0.071 \mathrm{~g}(35 \%)$ of a $1: 1.1$ mixture of ethyl 2-methylene-9-oxobicyclo[3.3.1]-nonane-1-carboxylate (44) and ethyl 10 -oxobicyclo[4.3.1] dec-3-enecarboxylate (43), which were separated by preparative GC.

Data for 44: ${ }^{1} \mathrm{H}$ NMR $\delta 5.14$ (d, $1, J=2.0$), 4.83 (d, $1, J=1.8$), 4.25-4.14 (m, 2, AB portion of ABX_{3}), 2.74-2.69 (m, 1), 2.46-1.50 ($\mathrm{m}, 10$) , $1.24\left(\mathrm{t}, 3, J=7.0\right.$) ${ }^{13} \mathrm{C}$ NMR $\delta 213.9,171.3,149.5,110.3$, 64.5, 61.0, 44.7, 40.2, 37.1, 31.8, 27.7, 16.8, 14.0; IR (neat) 1745-1720 (br) $\mathrm{cm}^{-1} ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=7.61 \mathrm{~min}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}$, 70.24; H, 8.16. Found: C, 69.61; H, 8.51.

Data for 43: ${ }^{1} \mathrm{H}$ NMR $\delta 5.93-5.79(\mathrm{~m}, 2), 4.21(\mathrm{q}, 2, J=7.0)$, 2.82-2.76 (m, 1), 2.60 (d, 1, J=4.9), 2.49-1.55 (m, 9), $1.28(\mathrm{t}, 3$, $J=7.0$), upon irradiation at $\delta 5.86$, the d at $\delta 2.60$ collapsed to a singlet, indicating the presence of an otherwise isolated allylic methylene group: ${ }^{13} \mathrm{C}$ NMR $\delta 212.0,173.2,129.4,129.0,61.2,61.1$, $47.3,35.9,32.9,32.4,30.7,18.6,14.1$; IR (neat) $1735,1710 \mathrm{~cm}^{-1}$; $t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=8.68 \mathrm{~min}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 70.24 ; \mathrm{H}$, 8.16. Found: C, 69.81; H, 8.25.

Oxidative Cyclization of 45 with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot \mathrm{HH}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathbf{O A c})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. A solution of $45(0.305 \mathrm{~g}, 1.28 \mathrm{mmol}), \mathrm{Mn}(\mathrm{O}-$ $\mathrm{Ac})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.687 \mathrm{~g}, 2.56 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.256 \mathrm{~g}, 1.28$ mmol) in glacial acetic acid (15 mL) was stirred at room temperature for 24 h . Normal workup gave $0.294 \mathrm{~g}(97 \%)$ of crude material. Purification of 0.246 g by flash chromatography ($10: 1$ hexane-EtOAc) gave $0.025 \mathrm{~g}(10 \%)$ of a $1: 1$ mixture of ethyl 8 -oxo-endo-2-[1(E)-propenyl]bicyclo[3.2.1]octane-1-carboxylate (47) and ethyl 8-oxo-2(E)-propylidenebicyclo[3.2.1]octane-1carboxylate (48) and other unidentified components, followed by $0.189 \mathrm{~g}(74 \%)$ of 47 .

Data for 48 determined from the mixture: ${ }^{1} \mathrm{H}$ NMR δ 5.2-5.4 (m, 1), 2.30 (dq, $2, J=7,7$), $0.95\left(\mathrm{t}, 3, J=7\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 132.4$, $60.1,34.1,32.2,31.7,24.9,22.7,20.4,14.3,14.2,4$ carbons were not observed.
Data for 47: ${ }^{1} \mathrm{H}$ NMR $\delta 5.55$ (ddq, $1, J=1.0,15.2,6.5$), 5.29 (ddq, $1, J=6.5,15.2,1.7$), 4.29-4.11 (m, 2), 3.10 (br ddd, $1, J=$ $6.1,6.5,11.1, \mathrm{H} 2$), $2.55-2.40(\mathrm{~m}, 2), 2.11-1.83$ (m, 4), 1.79-1.59 (m, 2), 1.63 (ddd, $3, J=0.7,1.7,6.5$), $1.26\left(\mathrm{t}, 3, J=7.2\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 214.0,169.5,129.0,127.8,61.8,60.9,50.6,44.9,33.7,24.1,21.3$, 21.3, 18.0, 14.2; IR (neat) $1756,1725 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 71.16 ; \mathrm{H}, 8.53$. Found: C, 71.44; H, 8.74.

Oxidative Cyclization of β-Keto Ester 49a with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester $49 \mathrm{a}(0.211 \mathrm{~g}, 0.99$ $\mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(0.532 \mathrm{~g}, 1.98 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.198 \mathrm{~g}$, 0.99 mmol) in 10 mL of glacial acetic acid was stirred for 1 h at $50^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.203 g of crude product. Flash chromatography on silica gel (15:1 hexane-ether) gave $0.140 \mathrm{~g}(67 \%)$ of a $7: 3$ mixture of methyl 1-acetyl-2-[1(E)-propenyl)cyclopentanecarboxylate (51a) and methyl 1 -acetyl-2-[1(E)-propylidene]cyclopentanecarboxylate (52a), which were separated by preparative GC.

Data for 51a: ${ }^{1} \mathrm{H}$ NMR $\delta 5.48$ (ddq, $1, J=14.7,1.2,6.3$), 5.30 (ddq, $1, J=14.7,8.3,1.5$), 3.64 (s, 3), $3.22-3.12$ (m, 1), 2.43-2.32 ($\mathrm{m}, 1$), 2.12 (s, 3), $1.95-1.74(\mathrm{~m}, 3), 1.60(\mathrm{~d}, 3, J=6.3), 1.57-1.43$ ($\mathrm{m}, 2$); ${ }^{13} \mathrm{C}$ NMR $\delta 203.4,171.8,130.5,126.7,70.1,51.9,47.5,32.8$, $31.8,26.8,23.4,17.9$; IR (neat) $1745,1715 \mathrm{~cm}^{-1} ; t_{\mathrm{R}}\left(120^{\circ} \mathrm{C}\right)=20.1$ min.

Data for 52a: ${ }^{1} \mathrm{H}$ NMR $\delta 5.54$ ($\mathrm{tt}, 1, J=7.0,2.6$), $3.71(\mathrm{~s}, 3)$, $2.45-2.26(\mathrm{~m}, 3), 2.17(\mathrm{~s}, 3), 2.15-2.03(\mathrm{~m}, 3), 1.69(\mathrm{dq}, 2, J=7.0$, $7.6), 0.97(\mathrm{t}, 3, J=7.6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 204.4,172.0,138.8$, $129.870 .5,52.5,29.4,26.6,23.9,23.2,13.4 ; \operatorname{IR}\left(\mathrm{CDCl}_{3}\right) 1710,1600$ $\mathrm{cm}^{-1} ; t_{\mathrm{R}}\left(120^{\circ} \mathrm{C}\right)=27.6 \mathrm{~min}$.

Oxidative Cyclization of β-Keto Ester 49 b with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of β-keto ester $49 \mathrm{~b}(0.178 \mathrm{~g}, 0.79$ $\mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}(0.427 \mathrm{~g}, 1.58 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.160 \mathrm{~g}$, 0.79 mmol) in 8 mL of glacial acetic acid was stirred for 1 h at $50^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.181 g of crude product. Flash chromatography on silica gel (2:1 hexane-ether) gave $0.088 \mathrm{~g}(50 \%)$ of a $8.5: 1.5$ mixture of methyl 1-acetyl-2-[1(E)-propenyl]cyclohexanecarboxylate (51b) as a 4:1 mixture of diastereomers and methyl 1-acetyl-2-[1(E)propylidene]cyclohexanecarboxylate (52b), which were separated by preparative GC, followed by $0.066 \mathrm{~g}(38 \%)$ of a mixture of isomers of methyl 2-(1-acetoxypropyl)-1-acetylcyclohexanecarboxylate (53), which decomposed on attempted purification by preparative GC.

Data for the major diastereomer of $51 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\delta 5.68$ (ddq, $1, J=15.0,9.6,1.7$), 5.39 (ddq, $1, J=15.0,6.3,1.0$), 3.70 (s, 3 , minor diastereomer), 3.66 (s, 3), 2.70-2.60 (m, 1), 2.07 (s, 3), $1.96-1.85(\mathrm{~m}, 2), 1.75-1.50(\mathrm{~m}, 3), 1.60(\mathrm{dd}, 3, J=6.3,1.7)$, 1.47-1.32 (m, 3); ${ }^{13} \mathrm{C}$ NMR δ 205.6, $171.9,131.2,126.7,65.0,51.9$, $44.3,29.7,28.9,27.4,23.2,22.4,18.0$; IR (neat) $1740,1710 \mathrm{~cm}^{-1}$; $t_{\mathrm{R}}\left(125^{\circ} \mathrm{C}\right)=38.4 \mathrm{~min}$.

Data for 52b: ${ }^{1} \mathrm{H}$ NMR $\delta 5.02$ ($\mathrm{t}, 1, J=7.0$), 3.73 ($\mathrm{s}, 3$), 2.43-2.33 (m, 2), 2.20 (s, 3), 2.15-1.95 (m, 4), 1.53-1.40 (m, 4), 0.95 (t, 3, J $=7.6) ;{ }^{13} \mathrm{C}$ NMR $\delta 128.8,52.1,32.7,27.0,26.7,23.0,21.1,14.2$, five carbons were not observed; IR $\left(\mathrm{CDCl}_{3}\right) 1740,1710 \mathrm{~cm}^{-1} ; t_{\mathrm{R}}$
$\left(125^{\circ} \mathrm{C}\right)=51.9 \mathrm{~min}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}(51 \mathbf{b}$ and 52 b$)$: C, 69.61; H, 8.99. Found: C, 69.46; H, 9.07.

Data for 53: ${ }^{\mathrm{t}} \mathrm{H}$ NMR $\delta 5.00-5.50(\mathrm{~m}, 1), 3.7-3.8$ (several s, 3), $1.90-2.20$ (several s, 6), 1.1-2.5 (m, 11), 0.9-1.0 (m, 3); IR $\left(\mathrm{CDCl}_{3}\right)$ $1740,1710 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 63.35 ; \mathrm{H}, 8.51$. Found: C, 63.52; H, 8.36.

Oxidative Cyclization of Dione 54a with $\operatorname{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of dione $54 \mathrm{a}(0.108 \mathrm{~g}, 0.71 \mathrm{mmol})$, Mn $(\mathrm{OAc})_{3}(0.383 \mathrm{~g}, 1.43 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.144 \mathrm{~g}, 0.72 \mathrm{mmol})$ in 7 mL of glacial acetic acid stirred for 18 h at $25^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.088 g of crude product. Flash chromatography on silica gel (11:2 hexane-EtOAc) gave 0.040 g (38%) of 5-methylbicyclo[3.2.1]oct-2-ene-6,8-dione (57a): $\operatorname{mp} 74.5-76{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\delta 6.08$ (dddd, $1, J=9.0,7.0,2.1,1.1$), 5.62 (ddd, $1, J=9.0,3.0,3.0$), 3.16 (dd, $1, J=7.0,6.4$), $2.97(\mathrm{~d}$, $1, J=17.8$), 2.76 (br dd, $1, J=17.6,3.0$), 2.74 (dd, $1, J=17.8$, 6.4), 2.65 (ddd, $1, J=17.6,3.0,2.1$), $1.15(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 213.8$, $211.7,133.4,126.4,57.4,50.2,47.7,45.4,12.6 ; \mathrm{IR}\left(\mathrm{CDCl}_{3}\right) 1775$, $1725 \mathrm{~cm}^{-1}$. HRMS Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}: 150.0681$. Found: 150.0681.

The NMR spectrum of the crude product indicated ca. 20% of 5 -methylbicyclo[3.2.1]oct-3-ene-6,8-dione (58a). This material could not be isolated during purification. ${ }^{1} \mathrm{H}$ NMR $\delta 5.82$ (ddd, $1, J=8.6,6.1,6.1$), 5.27 (dd, $1, J=8.6,2.5$), $1.23(\mathrm{~s}, 3)$.

Oxidative Cyclization of Dione 54b with $\mathbf{M n}(O A c)_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of dione $54 \mathrm{~b}(0.113 \mathrm{~g}, 0.68 \mathrm{mmol})$, $\mathrm{Mn}-$ $(\mathrm{OAc})_{3}(0.369 \mathrm{~g}, 1.37 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.139 \mathrm{~g}, 0.69 \mathrm{mmol})$ in 7 mL of glacial acetic acid was stirred for 2 days at $25^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.115 g of crude product. Flash chromatography on silica gel (11:2 hexane-EtOAc) gave $0.016 \mathrm{~g}(14 \%)$ of 4,5 -dimethylbicyclo[3.2.1] oct-2-ene-6,8-dione (57b): ${ }^{1} \mathrm{H}$ NMR $\delta 6.07$ (ddd, $1, J=9.0,7.0,2.0$), 5.52 (dd, $1, J$ $=9.0,2.5), 3.12(\mathrm{dd}, 1, J=7.0,6.6), 2.81(\mathrm{ddq}, 1, J=2.5,2.0$, 7.0), $2.83(\mathrm{~d}, 1, J=18.6), 2.71(\mathrm{dd}, 1, J=18.6,6.6), 1.14(\mathrm{~s}, 3)$, $1.05(\mathrm{~d}, 3, J=7.0) ;{ }^{13} \mathrm{C}$ NMR $\delta 132.2,131.3,51.9,50.6,44.9,16.2$, 11.0, two carbonyl carbons and the quaternary carbon were not detected; IR (neat) $1770,1725 \mathrm{~cm}^{-1}$.

The NMR spectrum of the crude product indicated ca. 5% of 4,5-dimethylbicyclo[3.2.1]oct-3-ene-6,8-dione (58b). This material could not be isolated during purification: ${ }^{1} \mathrm{H}$ NMR $\delta 5.28$ (m, 1), 1.82 ($\mathrm{s}, 3$).

Oxidative Cyclization of Dione 61 with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution containing $\mathrm{Mn}(\mathrm{OAc})_{3}(0.413 \mathrm{~g}, 1.54 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(0.156 \mathrm{~g}, 0.78 \mathrm{mmol})$ and dione $61(0.128 \mathrm{~g}, 0.77 \mathrm{mmol})$ in 8 mL of glacial acetic acid was allowed to stir at $25^{\circ} \mathrm{C}$ for 4.5 days. Normal workup of the light blue solution afforded 0.060 $\mathrm{g}(48 \%)$ of 5 -methyl-3-methylenebicyclo[3.2.1]octane-6,8-dione (63): ${ }^{1} \mathrm{H} \operatorname{NMR} \delta 5.03(\mathrm{~d}, 1, J=1.5), 4.97(\mathrm{~d}, 1, J=1.9), 2.93-2.51$ (m, 7), $1.08(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.1,117.1,51.5,44.2,43.4,43.2$, 11.6, two carbonyl carbons and the quaternary carbon were not observed; IR $\left(\mathrm{CDCl}_{3}\right) 1750(\mathrm{br}), 1640 \mathrm{~cm}^{-1}$; HRMS for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$, calcd. 164.0838 , found 164.0840 .

Oxidative Cyclization of Dione 64 with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A solution of dione $64(0.142 \mathrm{~g}, 0.85 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3}$ $(0.458 \mathrm{~g}, 1.70 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.171 \mathrm{~g}, 0.86 \mathrm{mmol})$ in 9 mL
of glacial acetic acid was stirred for 6 days at $25^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.102 g of crude product. Flash chromatography on silica gel ($10: 1$ hexane-EtOAc) gave $0.046 \mathrm{~g}(33 \%)$ of an inseparable $1: 1$ mixture of 6 -methylbicyclo-[4.2.1]non-3-ene-7,9-dione (66) and 6-methylbicyclo[4.2.1]non4 -ene-7,9-dione (67): ${ }^{13} \mathrm{C}$ NMR $\delta 213.5,211.0,131.8,129.6,125.8$, $125.7,60.1,56.4,47.0,44.8,42.7,41.7,38.1,31.3,30.1,22.7,16.0$, 14.9, two carbonyl carbons were not detected; IR (neat) 1770,1725 $\mathrm{cm}^{-1} ; t_{\mathrm{R}}(\mathrm{GC} \mathrm{A})=6.39,6.63 \mathrm{~min}$.

Data for 66 determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.71-5.55 $(\mathrm{m}, 2), 3.21-3.12(\mathrm{~m}, 1), 2.87-1.90(\mathrm{~m}, 6), 1.16(\mathrm{~s}, 3)$.

Data for 67 determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 5.85 (ddd, $1, J=11.1,5.8,5.4), 5.33(\mathrm{dt}, 1, J=11.1,1.7), 3.21-3.12(\mathrm{~m}, 1)$, 2.87-1.90 (m, 6), 1.28 (s, 3).

Preparation of 6 -Methylbicyclo[4.2.1]nonane-7,9-dione (68) by Hydrogenation of 66 and 67. A solution of $10 \% \mathrm{Pd}$ on activated carbon $(0.013 \mathrm{~g})$ and a mixture of 66 and $67(0.014 \mathrm{~g}$, $0.08 \mathrm{mmol})$ in EtOH (0.5 mL) was stirred under H_{2} at $25^{\circ} \mathrm{C}$ for 2 h . The solution was filtered to remove the solid material and washed with hexane. The solvent was removed in vacuo to afford $0.014 \mathrm{~g}(99 \%)$ of 68 as a white solid: $\operatorname{mp} 57-58.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.12-3.05(\mathrm{~m}, 1), 2.82(\mathrm{dd}, 1, J=19.0,9.5), 2.76$ (dd, $1, J=19.0$, 1.5), 1.90-1.15 (m, 8), $1.12(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 56.5,46.4,43.736 .8$, 31.1, 25.3, 23.0, 17.7, two carbonyl carbons were not detected; IR $\left(\mathrm{CDCl}_{3}\right) 1765,1740-1720(\mathrm{br}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26; H, 8.49. Found: C, 71.67; H, 8.59.

Oxidative Cyclization of Malonate 69 a with $\mathrm{Mn}(\mathrm{OAc})_{3}$ and $\mathrm{Cu}(\mathrm{OAc})_{2 .}$. A solution of malonate $69 \mathrm{a}(0.342 \mathrm{~g}, 1.71 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{3}(0.917 \mathrm{~g}, 3.42 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.339 \mathrm{~g}, 1.71 \mathrm{mmol})$ in 15 mL of glacial acetic acid was stirred for 3.5 h at $50^{\circ} \mathrm{C}$. Normal workup of the light blue solution afforded 0.326 g of crude product. Flash chromatography on silica gel deactivated by 2% water (3:1 hexane-ether) gave 0.127 g of recovered starting material followed by $0.062 \mathrm{~g}(18 \%, 29 \%$ based on recovered starting material) of predominantly ethyl trans-4,5-dihydro-4-[1(E)-propenyl]-2-oxo-3H-furan-3-carboxylate (70a): ${ }^{1} \mathrm{H}$ NMR $\delta 5.65$ (dq, $1, J=15.5,6.3$), 5.31 (dd, $1, J=15.5,7.8$), 4.42 (dd, $1, J=$ $8.9,8.1$), 4.21 (q, $2, J=7.0$), 3.91 (dd, $1, J=9.3,8.9$), $3.55-3.50$ $(\mathrm{m}, 1), 3.31(\mathrm{~d}, 1, J=10.2), 1.64(\mathrm{~d}, 3, J=6.3), 1.26(\mathrm{t}, 3, J=$ $7.0) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.5,167.0,130.4,126.2,71.0,62.0,52.2,43.5$, 17.8, 14.0; IR (neat) $1785,1740 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 60.59; H, 7.12. Found: C, 60.22; H, 7.08.

Acknowledgment. This work was supported by the National Institutes of Health (Grant GM-30528), National Science Foundation (Grant CHE-8721312), and a Merck, Sharp, and Dohme sponsored 1988-1989 ACS Division of Organic Chemistry Fellowship to M.A.D.

Supplementary Material Available: Experimental procedures and spectral data for the preparation of $23 \mathrm{~b}, \mathbf{3 3 a}, \mathbf{3 3 b}, \mathbf{3 7}$, $54 \mathrm{a}, 54 \mathrm{~b}, 61$, and 64 and the cyclization of 69 b and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 57 a and 63 (7 pages). Ordering information is given on any current masthead page.

[^0]: (1) (a) Hart, D. J. Science 1984, 223, 883. (b) Geise, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press: Oxford, New York, 1986. (c) Surzur, J.-M. In Reactive Intermediates; Abramovitch, R. A., Ed.; Plenum: New York, 1982; Vol. 2, pp 121-295. (d) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073. (e) Beckwith, A. L. J.; Ingold, K. U. In Rearrangements in Ground and Excited States, Vol. 1; de Mayo, P., Ed.; Academic Press: New York, 1980; pp 162-310. (f) Ramaiah, M. Tetrahedron 1987, 43, 3541. (g) Curran, D. P. Synthesis 1988, 417 and 489.
 (2) (a) Breslow, R.; Olin, S. S.; Groves, J. T. Tetrahedron Lett. 1968, 1837. (b) Julia, M. Acc. Chem. Res. 1971, 4, 386.
 (3) (a) Kraus, G. A.; Landgrebe, K. Tetrahedron Lett. 1984, 25, 3939. (b) Curran, D. P.; Chen, M.-H.; Kim, D. J. Am. Chem. Soc. 1986, 108 , 2489. (c) Curran, D. P.; Kim, D. Tetrahedron Lett. 1986, 27, 5821.
 (4) (a) Bhandal, H.; Pattenden, G.; Russell, J. J. Tetrahedron Lett. 1986, 27, 2299, and references cited therein. (b) Patel, V. F.; Pattenden, G.; Russel, J. J. Ibid. 1986, 27, 2303. (c) Baldwin, J. E.; Li, C.-S.J. Chem. Soc., Chem. Commun. 1987, 166. (d) Pattenden, G. Chem. Soc. Rev. 1988, 17, 361 .
 (5) For a review of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ as an oxidant see: de Klein, W. J. In Organic Synthesis by Oxidation with Metal Compounds; Mijs, W. J., de Jonge, C. R. H., Ed.s; Plenum Press: New York, 1986; pp 261-314. See also references cited in: Breuilles, P.; Uguen, D. Bull. Soc. Chim. Fr. 1988, 705.
 (6) (a) Heiba, E. I.; Dessau, R. M.; Koehl, W. J., Jr. J. Am. Chem. Soc. 1968, 90, 5905. (b) Heiba, E. I.; Dessau, R. M. Ibid. 1971, 93, 524. (c) Heiba, E. I.; Dessau, R. M. Ibid. 1972, 94, 2888. (d) Heiba, E. I.; Dessau, R. M.; Rodewald, P. G. Ibid. 1974, 96, 7977. (e) Heiba, E. I.; Dessau, R. M. J. Org. Chem. 1974, 39, 3456. (f) Heiba, E. I.: Dessau, R. M. Ibid. 1974, 39, 3457. (g) Heiba, E. I.; Dessau, R. M.; Williams, A. L.; Rodewald, P. G. Org. Synth. 1983, 61, 22.
 (7) Bush, J. B., Jr.; Finkbeiner, H. J. Am. Chem. Soc. 1968, 90, 5903.

[^1]: (18) (a) Rhoads, S. J. J. Org. Chem. 1966, 31, 171. (b) Kol'tsov, A. I.; Kheifets, G. M. Russ. Chem. Rev. (Engl. Transl.) 1971, 40, 773.
 (19) (a) Kochi, J. K.; Bemis, A.; Jenkins, C. L. J. Am. Chem. Soc. 1968, 90, 4616. (b) Kochi, J. K.; Bacha, J. D. J. Org. Chem. 1968, 33, 2746. (c) Jenkins, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 843. (d) Kochi, J. K. In Free Radicals, Kochi, J. K., Ed.; Wiley: New York, 1973; Chapter 11. (e) Nonhebel, D. C. In Essays on Free-Radical Chemistry, Special Publication 24, Chemical Society: London, 1970; p 409. (f) Kochi, J. K. Science 1967, 155, 415.
 (20) Detection of trace amounts of minor isomers is difficult since 7 exists as three equilibrating tautomers and stereoisomers.

[^2]: (21) McGuirk, P. R.; Collum, D. B. J. Org. Chem. 1984, 49, 843. (22) Kwon, T.-S.; Snider, B. B. J. Org. Chem. 1989, 54, 3878.

[^3]: (24) Dunlap, N. K.; Sabol, M. R.; Watt, D. S. Tetrahedron Lett. 1984, 25, 5839 , and references cited therein.
 (25) Doerffel, V. K.; Kaspar, H.; Zimmermann, G. J. Prakt. Chem. 1974, 316, 645.
 (26) Paquette, L. A.; Wiedeman, P. E. Tetrahedron Lett. 1985, 26, 1603.
 (27) Trost, B. M.; Vladuchick, W. C. J. Org. Chem. 1979, 44, 148.

[^4]: (28) Mellor, M.; Pattenden, G. Synth. Commun. 1979, 9, 1.

[^5]: (29) MMX (version 89.000) obtained from Serena Software, 489 Serena Lane, Bloomington, IN 47401, was used on a VAX 8650 . Updated versions of MODEL (Version KS 2.94) obtained from Prof. Midland, University of California, Riverside, and Prof. Steliou, University of Montreal, were used for structure input and analysis.

[^6]: (33) Trost, B. M.; Runge, T. A. J. Am. Chem. Soc. 1981, 103, 7550.

